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Abstract

The incidence of tuberculosis (TB) disease in the United States has stabilized, and additional 

interventions are needed to make progress toward TB elimination. But the impact of such 

interventions depends on local demography and heterogeneity in populations at risk. Using state-

level individual-based TB transmission models, calibrated to California, Florida, New York, and 

Texas, we modeled two TB interventions: (i) Increased targeted testing and treatment (TTT) of 

high-risk populations, including people who are non-US-born, diabetic, HIV-positive, homeless, or 

incarcerated; and (ii) Enhanced TB contact investigation (ECI), including higher completion of 

preventive therapy. For each intervention, we projected reductions in active TB incidence over 10 

years (2016‒2026) and numbers needed to screen and treat to avert one case. TTT delivered to 

half of the non-US-born adult population could lower TB incidence by 19.8%–26.7% over ten 

years. TTT delivered to smaller populations with higher TB risk (e.g., HIV-positive, homeless) and 

ECI were generally more efficient, but had less overall impact on incidence. TTT targeted to 

smaller, highest-risk populations, and ECI can be highly efficient; however, major reductions in 

incidence will only be achieved by also targeting larger, moderate-risk populations. Ultimately, to 

eliminate TB in the US, a combination of these approaches is necessary.
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Introduction

Tuberculosis (TB) remains an important public health concern in the United States (US) 

with 9,272 cases in 2016 (1). Though this represents the lowest incidence rate since 

reporting began in 1953, the rate of decline in TB incidence is slowing (2). Model-based 

projections suggest that, without additional intervention, declines in TB incidence may slow 

even further (3,4,5).

Multiple analyses suggest that recent transmission of TB infection has declined sharply over 

the past two decades (6,7), such that over 70% of incident active TB now reflects 

reactivation of infection acquired in the distant past (8,9,10). Thus, existing TB control 

efforts, which have successfully reduced TB incidence – particularly TB incidence due to 

recent transmission (11) – may not produce ongoing similar reductions in the future. Hence, 

it is important to consider the potential impact of additional interventions, such as increasing 

targeted testing and treatment (TTT) of latent TB infection (LTBI) among high-risk 

populations.

There is substantial heterogeneity in TB epidemiology across the country, reflecting 

differences in demographics (e.g., population size and origin of non-US-born individuals 

(4)), prevalence of TB risk factors (e.g., HIV, diabetes, and immigration (12)), rates of 

reactivation, (13) and/or ongoing transmission (10). Moreover, there are differences in 

funding and implementation of TB prevention and control efforts. Such heterogeneities may 

cause the effectiveness of specific TB prevention strategies to differ between states, even 

when the implementation of each intervention is similar.

We therefore utilized a state-specific transmission model of TB in four states (California, 

Florida, New York, and Texas) to estimate the population-level impact of two TB inventions

— (i) increased TTT in high-risk populations and (ii) enhanced contact investigation (ECI). 

These four states not only contribute over half of all incident TB cases in the United States 

(1), but they are diverse in their demographic makeup and prevalence of TB risk factors.

Methods

Overview

Our primary objective was to quantify the projected impact (10-year reduction in TB 

incidence) and efficiency (number needed to screen and treat to avert one TB case) of 

augmented TTT and ECI, and to illustrate the extent to which these measures vary across the 

four largest US states. We used a previously described individual-based modeling 

framework, (4) structured to capture the demographic and epidemiological processes 

underpinning the diverse TB epidemics in these states. We expanded this model to 

incorporate and calibrate to historical data on diabetes, HIV, homelessness, and 
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incarceration. Using this framework, we modeled the potential impact of accelerated TTT 

and ECI in each state, which were identified as priorities in discussions with TB controllers 

from all four states. For both interventions, we estimated the number of individuals who 

would potentially be tested and treated under ideal scale-up conditions, the reduction in 

annual TB incidence (per 100,000 population) and TB cases over 10 years, the number 

needed to screen/test (NNS) and the number needed to treat (NNT) to avert one case of TB.

Baseline model

Full details of our model of population demography and TB natural history have been 

described elsewhere (4). Briefly, our model classifies individuals as being in one of four TB 

states: (i) uninfected; (ii) LTBI; (iii) active TB, or (iv) successfully treated. Rates of infection 

are proportional to the fraction of individuals with active TB, under a homogeneous mixing 

assumption. We incorporate secular trends in TB transmission rates and age- and time-

dependent reactivation rates, following previous models (14). Transmission rates and 

reactivation rates are calibrated to state-specific data including TB incidence, accounting for 

differences by age and temporal trends. The model allows for reinfection (with partial 

immunity following initial infection), diagnosis, and successful treatment (modeled as an 

instantaneous transition). Birth and death rates were calibrated to reflect each state’s age 

distribution.

Incorporation of high-risk populations

We modeled five TB risk factors: (i) non-US region of birth; (ii) diabetes; (iii) HIV; (iv) 

homelessness; and (v) incarceration. We estimated the size of the population with each risk 

factor (Table 1) and the proportion of TB cases that occurred in each high-risk population 

(Fig. 1).

Rates of immigration into each state were calibrated to the size of the non-US-born 

population (14) across eight regions: (i) Mexico; (ii) Latin America (excluding Mexico); (iii) 

China; (iv) India; (v) Asia (excluding China and India); (vi) Africa; (vii) Europe; and (viii) 

others. (See (4) for further details). We assumed that LTBI prevalence among non- US-born 

individuals at arrival reflected the TB prevalence in the region of origin (i.e., that individuals 

experienced a constant hazard of TB infection from birth until US arrival at a rate consistent 

with prevalence in the region of origin). After arrival, we assumed that there were no 

additional differences between non-US-born and US-born individuals in terms of mixing or 

natural history of TB progression. Hence, we assumed that any potential differential in risk 

of TB among the non-US-born reflected a higher probability of LTBI on arrival, rather than 

an increased probability of reactivation among non-US-born individuals relative to US-born 

individuals with LTBI.

For the other four risk factors, we calibrated state-specific probabilities of exposure/

development to the estimated prevalence of each risk factor in each state. (See Web 

Appendix 1, Web Table 1, and Web Figures 1–4 for details). We then made a priori 
assumptions about the mechanism of each risk factor’s effect: diabetes and HIV were 

assumed to increase an individual’s reactivation rate, whereas homelessness and 

incarceration were assumed to increase the rate of TB acquisition through transmission. We 
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calibrated the magnitude of this additional risk to risk-factor-specific TB incidence data in 

each state. (See Table 1 and Fig. 1 for data and model fits, and Web Table 1 for estimated 

magnitude of increase in state-specific risk factors).

Modeling TB interventions

We modeled two interventions, namely increased targeted testing and treatment of TB (TTT) 

in high-risk populations and enhanced TB contact investigation (ECI). We estimated the 

impact of interventions as additional changes from projected TB declines under baseline 

assumptions. We assumed that existing testing and treatment of LTBI resulted in 3% of 

individuals with untreated LTBI starting treatment annually (15), with 44% successfully 

completing treatment. We modeled contact investigation as evaluation of individuals from 

the underlying population, selected at random, but with weights reflecting the reported 

relative odds of active TB or LTBI among contacts compared against the general population 

(16). Except for this increased probability of TB/LTBI, contacts were not assumed to differ 

from the general population with respect to other risk factors. We assumed that TB contact 

investigation identified 16.9 contacts per case, with 50% of these contacts triggering contact 

investigations, of whom 82% were evaluated, and that 44% of individuals referred for LTBI 

treatment completed treatment (16). We did not consider enhancement of outbreak 

investigations or identification of other contacts not elicited during contact investigation. 

Each intervention was modeled over 10 years, and outcomes were projected over the same 

duration. The impact of each intervention was estimated by comparing model simulations 

with the intervention against corresponding simulations without the intervention.

i. (i) Increased Targeted Testing and Treatment of TB in high-risk populations. We 

modeled TTT as a one-time intervention including testing and treatment (of 

random selection of those with active TB and previously untreated LTBI) in five 

populations at high risk for TB. We assumed 85% sensitivity of testing, 66% 

completion of LTBI therapy, and 93% efficacy of treatment for LTBI among 

those who complete therapy (16,17,18).

ii. (ii) Enhanced TB Contact Investigation. We modeled enhanced TB contact 

investigation as an improvement over current estimates in the percentage of 

contacts evaluated (from 82% to 100%) and the percentage of contacts 

successfully completing LTBI treatment (from 44% to 84%). We used recent 

national data to estimate the number of contacts elicited and examined per index 

case and the odds of disease or infection among contacts (16) (Table 2).

Sensitivity Analyses

To evaluate the sensitivity of our results to variation in individual input parameters, we 

compared the primary outcome (percentage reduction in TB incidence) in model simulations 

with the parameter values in the highest decile against simulations with parameter values in 

the lowest decile. We performed this analysis for each intervention (including each set of 

population risk parameters) in each state. See Web Appendix 2, and Web Figure 5 for 

sensitivity of ECI; and Web Appendix 3, and Web Figures 6–9 for sensitivity of TTT). We 

also evaluated alternative intervention scenarios, such as treating LTBI with 3 months of 

isoniazid and rifapentine (see Web Appendix 4 and Web Tables 2 and 3), and doubling the 
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number of contacts evaluated in contact investigation (see Web Appendix 5 and Web Table 

4).

Results

Targeted Testing and Treatment

The non-US-born population represented the largest target group for LTBI evaluation and 

treatment. We estimated that screening 50% of randomly selected non-US-born adults in 

each state would require, per 100,000 population, testing of 7,882 (95% range, 7,876 – 

7,889) individuals in Texas; 9,698 (95% range, 9,691 – 9,707) in Florida; 10,953 (95% 

range, 10,944 – 10,961) in New York; and 13,379 (95% range, 13,372 –13,387) in California 

(Table 3). This would result in testing of approximately 2.16 million individuals in Texas, 

1.96 million individuals in Florida, 2.16 million individuals in New York, and 5.22 million 

individuals in California (See Web Appendix 6 and 7, and Web Tables 5 and 6 for other sub-

populations). Testing these people was projected to result in, per 100,000 population, 1.1 

(95% range, 0.9 – 1.2) TB diagnoses (identified active TB cases among those tested) and 

959 (95% range, 955 – 962) LTBI treatment completions in Texas; 1.0 (95% range, 0.8 – 

1.5) TB diagnoses and 1,337 (95% range, 1,332 – 1,342) LTBI treatment completions in 

Florida; 1.3 (95% range, 1.2 – 1.5) TB diagnoses and 1,523 (95% range, 1,518 – 1,528) 

LTBI treatment completions in New York; and 3.1 (95% range, 3.0 –3.4) TB diagnoses and 

2,546 (95% range, 2,542 – 2,550) LTBI treatment completions in California. Differences 

between states largely reflect the differences in the size of the non-US-born population 

(Table 1) and the relative risk of TB among those individuals (Fig 1). As shown in Table 3, 

targeted testing among diabetics would involve testing 58% (in California) to 100% (in 

Texas) as many individuals as testing the non-US-born but would generate only about one-

third as many people treated (for active TB or LTBI) in each state. By comparison, screening 

high-risk populations consisting of HIV-positive, homeless, or incarcerated individuals was 

estimated to result in substantially fewer individuals tested (< 1,000 per 100,000). This 

resulted in fewer cases of active TB diagnosed (< 0.5 per 100,000) and fewer LTBI treatment 

completions (< 200 per 100,000), reflecting the lower prevalence (<1.2%) of these other risk 

factors (Table 1).

TTT of non-US-born populations was projected to have substantial impact in all states 

(Table 4), achieving the following reductions in TB incidence (in addition to expected 

declines in the absence of additional intervention) over a 10-year period: 19.8% (95% range, 

16.9–22.9) in New York, 21.1% (95% range, 18.6–23.8) in Texas, 22.4% (95% range, 19.0–

26.1) in Florida, and 26.7% (95% range, 25.2–28.2) in California. Corresponding reductions 

in incidence from TTT among diabetics were: 6.4% (95% range, 3.2–9.8), 7.3% (95% range, 

4.6–10.5), 8.5% (95% range, 4.4–12.9), and 10.4% (95% range, 8.6–12.2). In comparison, 

the absolute impact of screening other high-risk populations was relatively small (no more 

than 6% reduction for any single risk group, in any state, except for a 10.3% reduction from 

TTT of HIV-positive people in Florida). This reflects the smaller size of these highest-risk 

populations (Table 1), which therefore account for a relatively small proportion of overall 

TB incidence (Fig 1).
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Conversely, TTT in the non-US-born and diabetic populations was projected to be less 

efficient compared to screening highest-risk groups (Fig 2). For example, the estimated NNS 

to avert one TB case among HIV-positive individuals was 100–500, with a corresponding 

NNT of 10–50, whereas corresponding estimates for people with diabetes were 

approximately ten-fold higher (1,000–5,000 and 100–300, respectively).

There was also substantial heterogeneity in the efficiency of TTT between states, with lower 

NNS/NNT indicating greater effectiveness. For example, the NNS among diabetic 

populations was projected to be more than twice as high in Florida relative to California 

(turquoise bars in Fig 2, top panel), and the NNT among non-US-born populations was more 

than twice as high in New York relative to Texas (purple bars in Fig 2, bottom panel).

Enhanced contact investigation

We estimated the odds ratio of active TB and LTBI among contacts of active TB cases, 

relative to the general population, to be 1239 and 3.8, respectively. The projected yields of 

ECI differed substantially across the four states: we estimated 0.15 (95% range, −0.04 – 

0.36) additional TB diagnoses and 15 (95% range, 14 – 16) additional LTBI treatment 

completions in Florida versus 0.36 (95% range, 0.11 – 0.60) additional TB diagnoses and 51 

(95% range, 49 – 52) additional LTBI treatment completions in California, per 100,000 

population (Table 5). The projected impact of ECI on TB incidence was modest and subject 

to considerable uncertainty. The corresponding projected 10-year reductions in incidence 

ranged from 0.01% in New York to 0.67% in California, but the 95% uncertainty range 

included 0% in all four states. Nevertheless, point estimates suggested that ECI is likely to 

be an efficient intervention, with NNT less than 200 in all states (Figure 2).

Discussion

In these models of TB transmission in the four US states that contribute to more than half of 

new TB cases, we incorporated state-level data on demography, TB incidence, and size of 

high-risk populations to quantify the projected impact and efficiency of targeted testing and 

treatment and expanded contact investigation. Our results suggest that accelerating TTT and 

expanding contact investigation can generate meaningful reductions in TB incidence, but the 

impact and efficiency of these interventions is likely to differ across states. Those 

interventions that achieve the largest population-level impact (e.g., TTT of non-US-born and 

diabetic populations) differ from those that are most efficient (e.g., ECI and TTT of HIV-

positive, homeless, and incarcerated populations). Ultimately, if TB is to be eliminated in the 

US, a combination of these approaches is likely to be necessary.

Contact investigation has served a critical role in achieving reductions in TB incidence to 

date. However, our work suggests that further expansion of contact investigation is unlikely 

to have major additional population-level impact in terms of further reducing TB incidence – 

largely because existing efforts are already reasonably comprehensive. ECI remains critical, 

however, in maintaining low rates of TB transmission in high-risk populations and averting 

future outbreaks of disease (19).

Shrestha et al. Page 6

Am J Epidemiol. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Progress in further reducing TB incidence is likely to hinge on success in implementing TTT 

in high-risk populations. Our study revealed important state-level heterogeneity in projected 

impact (and efficiency) of TTT. For example, the maximum impact of TTT (in all high-risk 

populations) was about 20% lower in New York compared to California. This was more 

pronounced in smaller risk groups: for example, TTT of HIV-positive individuals could avert 

four times as many TB cases in Florida compared to California. Heterogeneity in projected 

impact was accompanied by heterogeneity in projected efficiency between states – reflecting 

between-state differences in TB incidence, LTBI prevalence, prevalence of risk factors, and 

strength of risk factors (in terms of their association with TB). In prioritizing interventions at 

the state level, it is important to take such heterogeneities into account. Prioritization of TB 

elimination activities such as TTT and ECI involves diverse stakeholders, including TB 

controllers at the state level, and primary care providers and specialized agencies (e.g., 

federally qualified health centers, correctional facilities). Each of these stakeholders must 

balance multiple considerations – such as budgetary constraints and political will – in 

deciding how to allocate resources. Collaboration between these stakeholders is critical if 

TB elimination is to be achieved; recognition of heterogeneities in transmission at the state 

level may help to facilitate such collaboration.

This study has important limitations. As there were no primary data on state-specific LTBI 

prevalence, we estimated this prevalence indirectly by calibrating the model to other 

available data (e.g., state-level demographics and TB incidence). Our estimates are 

comparable with other recent estimates of LTBI prevalence in these four states (20). (See 

Web Appendix 8, Web Figure 10, and Web Table 7). Similarly, state-specific data on 

historical state-level TB control efforts, including TTT and CI, were not available. We 

therefore assumed that state-specific levels of these activities reflected national estimates 

(16). State-specific contact investigation indicators for 2015 reveal that there might be 

significant differences in contact investigation performance: for example, 61% of identified 

contacts started treatment, and 73% completed treatment in California, versus 68% and 67% 

in Texas, 80% and 66% in Florida, and 81% and 77% in New York. However, sensitivity 

analysis (Web Appendix 2) shows that these variations likely have little effect on the 

modeled impact of ECI in these four states. We compiled data on high-risk populations from 

several sources; numerators (from the NTSS database) and denominators (Table 2) of our 

incidence estimates may be subject to different biases and uncertainties and did not include 

overlap between different risk groups. Finally, we were unable to analyze TTT by both 

birthplace and diabetes; TTT is likely to be more efficient among non-US-born persons than 

among US-born persons with diabetes (21).

We made several simplifying modeling assumptions, including our implicit hypothesis that 

historical trends in TB declines were primarily driven by reductions in TB transmission (as 

opposed to, e.g., declines in reactivation rates). While secular declines in reactivation rates 

(per person-year among people with LTBI) have been suggested over longer time frames 

(22), these declines are less likely to affect 10-year projections. The low levels (< 15%) of 

recent transmission in the United States observed using TB genotyping data corroborate this 

assumption (13). We modeled some age-specific differences in reactivation rates, but 

focused on the differences during early years of life. We also made simplifying assumptions 

regarding how different risk factors modulated TB risks (i.e., by reducing risk of acquisition 
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versus reactivation), and we assumed that US- and non-US-born populations only differed in 

their LTBI prevalence (i.e., not in the risk of reactivation, among those with LTBI), 

consistent with other estimates (8). We assumed that LTBI prevalence among non-US-born 

individuals at arrival reflects the TB prevalence in the country/region of origin (4). The non-

US-born population is a diverse group, and LTBI prevalence among immigrants to the US 

can differ from their age-matched LTBI prevalence in home countries (23,24). Because our 

model is calibrated to TB incidence (rather than LTBI prevalence) in the US, our estimates 

of intervention impact are relatively robust to LTBI prevalence estimates (see Web Appendix 

9, and Web Table 8). Furthermore, available data (23) show strong correlation between TB 

incidence among non-US-born populations in the US and TB incidence in the country of 

origin (particularly among recent migrants), as well as higher incidence among recent 

arrivals (see Web Appendix 10, and Web Figure 11), suggesting that our model assumptions, 

though simplistic, are reasonable to a first approximation.

In our model of enhanced contact-investigation, we did not capture potentially important 

differences between contacts and other individuals with (latent or active) TB, such as 

nativity, presence of other risk factors (e.g., homelessness), or the risk of TB progression, 

which may be higher owing to the possibility of recent infection. Consequently, these 

estimated impact of ECI are likely conservative. While the uncertainty ranges for the 

projected population-level impact of ECI likely still cross zero, our estimated NNT for ECI 

may be an overestimate. These findings may also not necessarily generalize as well to other 

states, especially states (e.g., those in the Southeast) that have lower proportions of non-US-

born individuals and higher proportions of TB due to recent transmission. We modeled 

idealized interventions, assuming it was feasible to identify populations for testing and 

achieve large-scale implementation; thus, our results should be interpreted as the potential 

impact from broad scale-up of these interventions on the population level, not the actual 

impact likely to be observed from implementing these interventions under more realistic 

conditions. TTT in non-US-born and diabetic populations were modeled to be deployed in a 

random fashion: prioritizing higher risk subpopulations (e.g., recent arrivals to the US) may 

further increase this estimated impact. Finally, in our projections, we did not account for 

potential future demographic shifts, including changes in the sizes of the populations 

analyzed or potential declines in TB prevalence globally; these shifts are likely to be small 

on a 10-year time frame.

In summary, this state-specific TB model suggests that expanded TB interventions, 

particularly TTT of high-risk populations, can play an important role in reducing TB 

incidence over the next 10 years. However, the impact and efficiency of these interventions 

likely vary across risk groups and across states. Targeting smaller high-risk populations such 

as HIV-positive and homeless populations is likely to yield greater impact per person 

screened (or treated), but these populations are not large enough to effect substantial 

reductions in TB incidence at a population level. TTT of non-US-born and particularly 

diabetic populations is less efficient on a per-person-screened basis, but these populations 

contribute large numbers of TB cases, such that averting these future cases can result in 

substantial reductions in TB incidence. There are also important differences in the impact 

and efficiency of TB interventions between states, driven by state-level differences in 

prevalence of populations at risk for TB, LTBI prevalence in each population, and TB 
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transmission and reactivation rates. Accounting for these differences across risk groups and 

between states may help to improve the impact and efficiency of TB interventions that are 

often implemented at the state level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Percentage of incident TB cases occurring among populations with selected risk factors 
in California, Florida, New York, and Texas.
Shown are the percentages of reported TB cases in five risk groups, namely (A) non-US-

born, (B) diabetic, (C) HIV-positive, (D) homeless and (E) incarcerated individuals, in four 

states: California, Florida, New York, and Texas (from left to right). Solid bars indicate 

reported data (averaged over 5 years from 2010 to 2014), with model simulations in hatched 

bars (and error bars corresponding to 95% ranges). Note the different scales of the y-axis for 

the non-US-born and diabetic populations, indicating their larger relative size. 

Abbreviations: HIV, human immunodeficiency virus; TB, tuberculosis.
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Figure 2. Comparative efficiency of TB interventions in California, Texas, New York, and 
Florida.
Shown in the top panel are the estimated numbers of individuals needed to screen (NNS) to 

avert one case of active tuberculosis (TB) for targeted testing and treatment (TTT) of latent 

TB infection (LTBI) among individuals who are non-US-born (purple), diabetic (turquoise), 

HIV-positive (red), homeless (blue), and incarcerated (yellow); and also for expanded 

contact investigation (ECI, maroon). Results are shown separately for each of the four 

largest states: California, Florida, New York, and Texas. Shown in the bottom panel are the 

estimated numbers of individuals needed to be treated (NNT) to avert a single case of TB. 

Shown are median estimates (indicated by the colored bars), along with 95% ranges 

(indicated by the lines). Bars with asterisks denote risk groups for which meaningful point 

estimates (bars with **) or 95% ranges (bars with *) could not be estimated due to small 
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population sizes. Note that NNS are not applicable for ECI, since it was modeled as 

increased evaluation rates and improved LTBI treatment completion rates among already 

identified contacts, with no additional screening. Abbreviations: ECI, enhanced contact 

investigation; HIV, human immunodeficiency virus; LTBI, latent tuberculosis infection; 

NNS, numbers needed to screen; NNT, numbers needed to treat; TB, tuberculosis; TTT, 

targeted testing and treatment of tuberculosis.
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